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Abstract

We investigate the existence of subinvariant metric functionals for commuting
families of nonexpansive mappings in noncompact subsets of Banach spaces.
Our findings underscore the practicality of metric functionals when searching
for fixed points of nonexpansive mappings. To demonstrate this, we addi-
tionally investigate subsets of Banach spaces that have only nontrivial metric
functionals. We particularly show that in certain cases every metric func-
tional has a unique minimizer; thus, subinvariance implies the existence of a
fixed point.

Keywords: metric functional, nonexpansive mapping, averaged mapping,
common fixed point, subinvariance
2000 MSC: 47H09, 47H10, 47J25, 54E40, 46N10, 47N10, 46B20

1. Introduction

The purpose of this note is to demonstrate the utility of metric functionals
in the study of fixed points of nonexpansive mappings.

A mapping T : E → E defined on a metric space (E, d) is called non-
expansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ E. Nonexpansive mappings
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are not simply abstract objects studied by mathematicians; they also form
the backbone of many important methods used by applied science practition-
ers. For example, nonexpansive mappings are naturally found in the design
of iterative methods for optimization algorithms, nonlinear evolution equa-
tions, and control systems (see, for example, [1] and [2]). Such methods are
designed as follows: one associates the original problem with a family of non-
expansive mappings Tµ : E → E so that a common fixed point z = Tµz (for
all µ) gives a solution to the aforesaid problem, then one builds in the metric
space E a sequence of points (xµ) that under certain conditions converges to
z. It is worth mentioning that the existence of a common fixed point for a
given family of nonexpansive mappings is not guaranteed in general.

The main key in our research approach is the notion of a metric func-
tional. The idea is simple and of common form within mathematics: one
considers the metric space been embedded into a larger space (the set of
metric functionals) where a solution to a “weaker" problem may be available,
then sometimes one can show that this procedure yields a solution in the
original space and formulation. This idea is rigorously defined below.

Definition 1.1. Let (E, d) be a metric space. We denote by RE the space
of all functionals from E to R and equip it with the topology of pointwise
convergence. We fix a point o ∈ E and consider the mapping w 7→ hw from
E to RE defined by the formula

hw(x) = d(x,w)− d(o, w) for all x ∈ E. (1.1)

We denote by E♢ the closure of the set {hw | w ∈ E} in RE and we call each
element of E♢ a metric functional.

Proposition 1.2. ([3, Chapter 3]) The following properties hold:

1. The mapping w 7→ hw from E to RE is injective and continuous.
2. The space E♢ is compact and Hausdorff.

Since each point w ∈ E is uniquely identified with the metric functional
hw ∈ E♢, we may view E as been embedded into the compact space E♢.
For that reason, we call the metric functionals of the form (1.1) internal.

When a subset X of E is considered equipped with the same metric d,
we can similarly build the compact space X♢. Clearly, each internal metric
functional hw ∈ X♢ can be defined on the whole space E; thus, for each
h ∈ X♢ there exists h̃ ∈ E♢ such that h̃(x) = h(x) for all x ∈ X (see [4,
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Proposition 1]). In this context, we will always assume that X♢ is a subset
of E♢ and hence operates in all points of E.

Definition 1.3. We say that a functional f ∈ RE is subinvariant for a
mapping T : E → E if f(Tx) ≤ f(x) for all x ∈ E.

It follows readily from the previous definitions that the existence of inter-
nal metric functionals which are subinvariant and the existence of fixed points
coincide for nonexpansive mappings. We record here a precise statement.

Proposition 1.4. Given a mapping T : E → E, the following holds:

1. If an internal metric functional hz ∈ E♢ is subinvariant for T , then
z ∈ E is a fixed point of T .

2. If T is nonexpansive and has a fixed point z ∈ E, then the internal
metric functional hz ∈ E♢ is subinvariant for T .

We may face different situations with subinvariant metric functionals that
are not internal. To begin with, some spaces have the metric functional that
vanishes everywhere, and hence it is subinvariant for all mappings. Secondly,
there may be subinvariant metric functionals that are not internal but provide
the existence of fixed points. And finally, if for some metric functional we
would have h(Tx) < h(x) for all x ∈ E, then T cannot have a fixed point in
E.

2. Problem statement

In what follows we will consider nonexpansive mappings that are defined
on Banach spaces or their subsets equipped with the same norm. To be
precise, we want to study the following problem.

Problem. Let X be a subset of a Banach space E and let F be a
commuting family of nonexpansive mappings from X to itself. Find a
metric functional h ∈ X♢ that is subinvariant for all T ∈ F .

We present next a simple example that fits our problem statement and is
related to the iterative methods mentioned in the previous section.
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Example 2.1. Let us assume that A : E → E is a linear operator and b
is some point in E. For each real number µ let us consider the mapping
Tµ : E → E defined by the formula

Tµx = (1− µ)x+ µ(Ax+ b).

We notice that for all µ, ν ∈ R and for all x ∈ E we have TµTνx = TνTµx.
Now, if we assume that ∥Ax∥ ≤ ∥x∥ for all x ∈ E, then F = {Tµ | 0 < µ < 1}
is a commuting family of nonexpansive mappings.

We can extend the previous example as follows: let {qs} be a family of
nonvanishing polynomials and set

ps(λ) = 1− (1− λ)qs(λ).

Consider the affine mappings Tsx = ps(A)x+ qs(A)b, where A is a bounded
linear operator (see [5, Proposition 1.4.2]). Then, F = {Ts} is a commuting
family. Depending on the spectrum σ(A), it is possible that ∥ps(A)∥ ≤ 1.
Collecting all such pairs qs, ps we have a commuting family of affine nonex-
pansive mappings.

Before stating our main results, we want to present another example that
motivates our study.

Example 2.2. Let us assume that E is any of the Banach spaces c0, ℓ1, ℓ2,
ℓ∞ consisting of real sequences x = (xk)k≥1. Let us consider the mapping
T : E → E given by the formula

T (x1, x2, x3, . . . ) = (1, x1, x2, x3, . . . ).

It is clear that T is both affine and isometric. From purely algebraic consid-
erations, we observe that the only sequence which is mapped back to itself
is z = (1, 1, 1, . . . ). Hence, T has a unique fixed point in the space E = ℓ∞
and hz is a unique subinvariant metric functional. Now, z is not in any of
the smaller spaces, but we can construct subinvariant metric functionals for
T by considering the “truncated" vectors an = T n0 and taking limits of han .
We will show in Proposition 4.3 that if E = ℓ2 then the only metric func-
tional that is subinvariant for T vanishes identically. Since there is no other
subinvariant metric functional, T has no fixed points in ℓ2. We will show
also in Proposition 4.3 that if E = ℓ1 then there are infinitely many metric
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functionals that are subinvariant for T , all of them nontrivial. For example,
the unbounded sequence (an) in ℓ1 generates the metric functional

h(x) =
∞∑
k=1

(|xk − 1| − 1),

which is subinvariant for T . In fact, we have h(Tx) = h(x)−1 for all x ∈ ℓ1,
and hence T has no fixed points in ℓ1. Finally, if E = c0 then the sequence
(an) in c0 generates the metric functional

h(x) = sup
k≥1

|xk − 1| − 1,

which is subinvariant for T .

Remark 2.3. A theorem of Gaubert and Vigeral [6] implies the existence
of a metric functional that is subinvariant for each element of the family
F = {T n | n ≥ 1}, where T : X → X is nonexpansive and X is a star-shaped
subset of E. Karlsson showed a similar result in [7, Proposition 13]. Their
approaches, however, do not seem to be adaptable for general commuting
families of nonexpansive mappings.

3. Main results

Our main results are stated here and their proofs are given in Section 5.
For a mapping T : X → X we set m(T,X) = inf{∥x− Tx∥ | x ∈ X}.

Theorem 3.1. Let E be a Banach space and let F be a commuting family
of affine nonexpansive mappings from E to itself. If X is a nonempty convex
subset of E with the property that for all T ∈ F we have TX ⊂ X and
m(T,X) = 0, then there exists a metric functional h ∈ X♢ such that for all
x ∈ E and for all T ∈ F we have

h(Tx) ≤ h(x).

In other words, h is a subinvariant metric functional for all T ∈ F .

Remark 3.2. By a theorem of Kohlberg and Neyman [8], we know that if
T : X → X is a nonexpansive mapping defined on a convex subset X of a
Banach space, then for all y ∈ X we have m(T,X) = limn→∞∥T ny∥/n. Thus,
the assumption m(T,X) = 0 for all T ∈ F in Theorem 3.1 holds whenever
there is a vector y ∈ X such that for all T ∈ F the aforementioned limit
equals zero. This clearly holds for example when X is bounded.
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The following statement holds true for nonexpansive mappings, assuming
neither affinity nor convexity, with the condition that there is a vector x0

such that
lim
n→∞

∥T nx0 − T n+1x0∥ = 0. (3.1)

Theorem 3.3. Let E be a Banach space and let F be a commuting family
of nonexpansive mappings from E to itself. If X is a nonempty subset of
E such that TX ⊂ X for all T ∈ F and has a vector x0 such that (3.1)
holds for all T ∈ F , then there exists a metric functional h ∈ X♢ that is
subinvariant for all T ∈ F .

We emphasize that our results are valid without any compactness assump-
tion as opposed to what is assumed in classical fixed-point theorems such as
those obtained by Markov [9], Kakutani [10], DeMarr [11], and Browder [12].
As it was indicated in Proposition 1.4, for every nonexpansive mapping T ,
the existence of internal metric functionals that are subinvariant for T is
equivalent to the existence of fixed points of T . Internal metric functionals
appear naturally when T maps a compact set to itself.

Sometimes we may be able to conclude the existence of a fixed point even
when the subinvariant metric functional is not internal. This happens for
example in cases where one knows all the metric functionals on the considered
space. Gutiérrez [13] showed explicit formulas for all the metric functionals
on the ℓp spaces with 1 ≤ p < ∞, we recall those formulas in Section 4.
Having these available, the existence of a common fixed point follows from
Theorem 3.1 as shown below.

Corollary 3.4. Assume that 1 ≤ p < ∞. Suppose that F is a commuting
family of affine nonexpansive mappings from ℓp to itself. If there exists a
nonempty bounded subset B of ℓp such that for all T ∈ F we have TB ⊂ B,
then the family F has a common fixed point in ℓp. More precisely, there exists
a vector z ∈ ℓp such that for all T ∈ F we have Tz = z.

Proof. Let E = ℓp and let X be the convex hull of B. Thus, X is a nonempty
bounded convex subset of E such that TX ⊂ X for all T ∈ F . It follows from
Remark 3.2 that for all T ∈ F we have m(T,X) = 0. By Theorem 3.1, there
exists a metric functional h ∈ X♢ that is subinvariant for all T ∈ F . This
metric functional h must be of the form (4.1) when p > 1 (see Theorem 4.1)
or internal when p = 1 (see Theorem 4.2). Thus, there exists a vector z ∈ E
such that for all x ∈ E and for all T ∈ F we have ∥Tx − z∥p ≤ ∥x − z∥p.
Therefore, the vector z ∈ E is the common fixed point of the family F .
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3.1. A fixed point theorem
The fixed point z shown in Corollary 3.4 is not necessarily a point in

the set B. We need additional properties if we insist on looking for a fixed
point inside a given set. A key property that holds in all the ℓp spaces
with 1 ≤ p < ∞ is the Opial property [14]. We recall this property in
Definition 4.21.

The following statement could serve as a model result to obtain a fixed
point from a subinvariant metric functional.

Theorem 3.5. Let X be a nonempty weakly compact subset of a Banach
space having the Opial property. If a mapping T : X → X has a subinvariant
metric functional h ∈ X♢, then T has a fixed point in X.

4. Metric functionals

Metric functionals on Banach spaces were investigated, for example, in
[15], [13], [16], [17], [18], [19], [20]. We recall here explicit formulas for all
metric functionals on the ℓp spaces with 1 ≤ p < ∞, where the norm of every
real sequence x = (xk)k≥1 is defined by

∥x∥p =
(∑

k≥1

|xk|p
)1/p

.

Theorem 4.1. ([13, Section 5]) Assume that 1 < p < ∞. We have h ∈ (ℓp)
♢

if and only h is either a continuous linear functional with norm at most 1,
or a functional of the form

h(x) =
(
∥x− z∥pp + cp − ∥z∥pp

)1/p − c (4.1)

for some z ∈ ℓp and some c ∈ R with c ≥ ∥z∥p. Moreover, if X is a bounded
subset of ℓp then each metric functional h ∈ X♢ is of the form (4.1).

Theorem 4.2. ([13, Section 3]) We have h ∈ (ℓ1)
♢ if and only if there exists

a subset I of N, an element ε of {−1, 1}I , and an element z of RN\I such
that for all x ∈ ℓ1 we have

h(x) =
∑
i∈I

εixi +
∑
i ̸∈I

(|xi − zi| − |zi|). (4.2)

Moreover, if X is a bounded subset of ℓ1 then each metric functional h ∈ X♢

is of the form h(x) = ∥x− w∥1 − ∥w∥1 for some w ∈ ℓ1.
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Now we proceed to prove the claims associated with the mapping T given
in Example 2.2.

Proposition 4.3. For the mapping T : E → E defined in Example 2.2 the
following holds:

1. If E = ℓ2 then the only subinvariant metric functional for T vanishes
identically.

2. If E = ℓ1 then there are infinitely many subinvariant metric functionals
for T , all of them nontrivial.

Proof. To show the first statement we use Theorem 4.1 as follows. First, let
us assume that any metric functional of the form (4.1) is subinvariant for T .
This implies that there is a vector z ∈ ℓ2 such that for all x ∈ ℓ2 we have
∥Tx − z∥2 ≤ ∥x − z∥2, which is a contradiction as T has no fixed points in
ℓ2. Thus, the remaining candidates must be linear functionals h(x) = ⟨x, z⟩,
where z ∈ ℓ2 with ∥z∥2 ≤ 1. Now, h is subinvariant for T if and only if
⟨x − Tx, z⟩ ≥ 0 for all x ∈ ℓ2. Denote z = (z1, z2, . . . ). If z1 ̸= 0, let us
define t = (z1 − 1)/z1. Since z is a vector in ℓ2, there exists an integer n > 1
such that |zn| ≤ 1/(2|t|+ 1). Let us define a vector x = (x1, x2, . . . ) in ℓ2 by
xj = t for j < n and xj = 0 for j ≥ n. Then, we have ⟨x − Tx, z⟩ ≤ −1/2,
and hence the metric functional h is not subinvariant. Finally, if m > 1 is
the smallest index j such that zj ̸= 0, we consider the vector x = (x1, x2, . . . )
in ℓ2 such that xm−1 = 1/zm and xj = 0 for j ̸= m − 1. Then, we have
⟨x− Tx, z⟩ = −1.

To show the second statement we use Theorem 4.2. We notice that the
0−functional is not a metric functional on ℓ1 (see (4.2)). Now, for each
integer N ≥ 1 let us consider the metric functional h(N) ∈ (ℓ1)

♢ given by the
formula

h(N)(x) =
∞∑

j=N+1

(−xj) +
N∑
j=1

(
|xj − 1| − 1

)
.

Then, for all x ∈ ℓ1 we have h(N)(x)− h(N)(Tx) = |xN − 1|+ xN ≥ 1.

Notice that if T is nonexpansive and has a unique fixed point z, then the
internal metric functional hz need not be the only subinvariant functional
for T . In fact, if S is the forward shift in ℓ2, then with all c ≥ 0 the metric
functional h(x) = (∥x∥22 + c2)1/2 − c (see (4.1)) is invariant for S.
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4.1. Properties of metric functionals
As we observed previously, there are metric spaces which have the metric

functional that vanishes identically. It is therefore reasonable to determine
conditions under which a metric space has only nontrivial metric functionals.
To this end, we introduce here some relevant concepts.

Definition 4.4. We say that a metric space X has the zero-free property,
ZFP, if for each metric functional h ∈ X♢ there exists a point x ∈ X such
that h(x) ̸= 0.

Definition 4.5. We say that a metric space X has the unique minimizer
property, UMP, if for each metric functional h ∈ X♢ there exists a point
a ∈ X such that for all x ∈ X \ {a} we have h(a) < h(x).

The following implication is immediate.

Proposition 4.6. If a metric space has UMP then it has ZFP.

We emphasize that ZFP and UMP depend truly on the metric. To show
this, let us assume that (A, dA) and (B, dB) are metric spaces and let Xp

denote the direct sum A⊕B equipped with different metrics dp:

dp =

{
(dpA + dpB)

1/p for 1 ≤ p < ∞,

max{dA, dB} for p = ∞.

Proposition 4.7. For the metric space X1 the following properties hold:

1. We have h ∈ (X1)
♢ if and only if there are two metric functionals

hA ∈ A♢ and hB ∈ B♢ such that h(x) = hA(a) + hB(b) for all
x = (a, b) ∈ X1.

2. The metric space X1 has ZFP if and only if at least one of A and B
has ZFP.

3. The metric space X1 has UMP if and only if both A and B have UMP.

Proof. Let us fix two points a0 ∈ A and b0 ∈ B. The point (a0, b0) ∈ X1 is
fixed when we build the compact space (X1)

♢.
The first statement follows from the formula

d1((a, b), (w, z))− d1((a0, b0), (w, z)) = hA
w(a) + hB

z (b),

where hA
w(a) = dA(a, w)− dA(a0, w) and hB

z (b) = dB(b, z)− dB(b0, z).
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Let us consider the second statement. If both A and B have identically
vanishing metric functionals, their sum also vanishes. Now, let us assume
that A has ZFP and consider a metric functional h = hA+hB. We know
that there exists â ∈ A such that hA(â) ̸= 0. Since hB(b0) = 0, we have
h(â, b0) = hA(â) ̸= 0. If B has ZFP instead, then we have h(a0, b̂) ̸= 0 for
some b̂ ∈ B.

To show the last statement, let us assume first that both A and B have
UMP. Then, for every metric functional h = hA+hB there are â ∈ A and
b̂ ∈ B such that hA(â) < hA(a) for all a ̸= â and hB(b̂) < hB(b) for all
b ̸= b̂. This implies that h(â, b̂) < h(a, b) for all (a, b) ̸= (â, b̂). Now, let us
assume that X1 has UMP and consider two metric functionals hA ∈ A♢ and
hB ∈ B♢. Since X1 has UMP, there are two points â ∈ A and b̂ ∈ B such
that

hA(â) + hB(b̂) < hA(a) + hB(b) for all (a, b) ̸= (â, b̂).

In particular, by evaluating the inequality shown above at the point (a, b̂)
with a ̸= â, we have hA(â) < hA(a). If we consider the point (â, b) with b ̸= b̂
instead, we have hB(b̂) < hB(b).

For 1 < p ≤ ∞ the situation is quite different.

Proposition 4.8. Consider the metric space Xp for 1 < p ≤ ∞. Assume
that B is unbounded and has a metric functional hB = limn h

B
n , where

hB
n (b) = dB(b, bn) − dB(b0, bn) with dB(b0, bn) → ∞. Then, the mapping

(a, b) 7→ hB(b) is a metric functional on Xp.

Proof. Let us fix a0 ∈ A and consider internal metric functionals on Xp of
the form

h(a0,bn)(a, b) = dp((a, b), (a0, bn))− dp((a0, b0), (a0, bn)).

Then, for the case 1 < p < ∞ we have

h(a0,bn)(a, b) = hB(b) + o(1) as dB(b0, bn) → ∞,

and for the case p = ∞ we have

h(a0,bn)(a, b) = max{dA(a, a0)− dB(b0, bn), h
B
n (b)}.

From the formulas shown above we conclude that h(a0,bn)(a, b) → hB(b) as
dB(b0, bn) → ∞.
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Example 4.9. Consider the space Xp = ℓ1⊕ℓ2, where ℓ1 and ℓ2 are equipped
with their usual norms. Then, X1 has ZFP while Xp with 1 < p ≤ ∞ does
not.

We will hereinafter consider properties of metric functionals on subsets
X of Banach spaces E. The standard notations BE and SE will denote
respectively the closed unit ball of E and the unit sphere of E.

Proposition 4.10. If a Banach space E has ZFP then X = δBE has ZFP
for all positive real numbers δ.

Proof. This follows from the compactness of E♢ and the scaling property of
the linear space E. Concretely, let us assume that X = δBE does not have
ZFP for some δ > 0. Then there exists a metric functional h ∈ X♢ that
vanishes identically in X. We know that there is a net (aα) in X such that
h(v) = limα hα(v), where hα(v) = ∥v − aα∥ − ∥aα∥ for all v ∈ E. Now, for
each integer m ≥ 1 let us consider the internal metric functionals

hm
α (v) = ∥v −maα∥ − ∥maα∥ = mhα(m

−1v).

For fixed m ≥ 1 and v ∈ E, the limit limα h
m
α (v) exists and equals mh(m−1v).

By compactness of E♢, the aforementioned limit determines a metric func-
tional hm ∈ E♢ that vanishes identically in the ball mX. Thus, for all v ∈ E
we have hm(v) → 0 as m → ∞. This limit determines precisely the metric
functional vanishing identically in the whole E, because E♢ is compact.

A simple modification of the previous proof gives the following.

Proposition 4.11. Assume that X is a cone of a Banach space E, meaning
tx ∈ X for all x ∈ X and for all t > 0. If there exists a metric functional
h ∈ X♢ vanishing identically in X ∩ δBE for some δ > 0, then X does not
have ZFP.

Before we state more properties of metric functionals, let us recall some
standard notations used in Banach space theory. For a given Banach space
E we will denote by E∗ the set of all continuous linear functionals on E.
We know that E∗ becomes a Banach space itself when we equip it with the
operator norm. To simplify our exposition, we will use the same notation to
denote both the norm on E and the operator norm on E∗. For a nonzero
vector x ∈ E we denote by ∂∥x∥ the set of subdifferentials:

∂∥x∥ = {f ∈ E∗ | ⟨x, f⟩ = ∥x∥, ∥f∥ = 1}
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and by j(x) the set of dual vectors:

j(x) = {f ∈ E∗ | ⟨x, f⟩ = ∥x∥2, ∥f∥ = ∥x∥}.

We show below that every subset of a Banach space that contains a ray
has a metric functional without lower bounds. In this context, a metric
functional associated with a ray is sometimes called a Busemann function.

Proposition 4.12. Let X be a subset of a Banach space E such that there
exists a vector u ∈ SE with the property that tu ∈ X for all t ≥ 0. Then, for
all x ∈ E we have

lim
t→∞

(∥x− tu∥ − t) = max{−⟨x, f⟩ | f ∈ ∂∥u∥}.

This limit determines a metric functional h ∈ X♢ such that h(su) = −s for
all s ≥ 0.

Proof. This follows immediately from the definition of the set ∂∥u∥. In fact,
if we fix x ∈ E then for all f ∈ ∂∥u∥ and for all t > 0 we have

∥tu− x∥ ≥ ∥tu∥+ ⟨−x, f⟩. (4.3)

The limit exists as it takes place in a two-dimensional subspace spanned by
u and x. We notice also that the real-valued function t 7→ ∥x− tu∥− ∥tu∥ is
non-increasing. As the inequality (4.3) holds for all f in the norm-closed set
∂∥u∥, the maximum is obtained in the limit.

Example 4.13. Let us consider X = {nen}n∈Z as a subset of the Banach
space c0, both equipped with the sup-norm. Thus, X is unbounded but does
not contain a ray. We notice that each metric functional h ∈ X♢ is either
internal or the zero functional.

Remark 4.14. If the unit sphere SE is smooth, the set ∂∥u∥ contains only
one element, say u∗. The corresponding metric functional in Proposition 4.12
becomes

h(x) = −⟨x, u∗⟩.

Example 4.15. Let us equip R2 with the norm ∥x∥ = |x1| + |x2| and fix
the point u = (1, 0) to determine the ray so that ∂∥u∥ = {(1, η) | |η| ≤ 1}
and max|η|≤1(−x1 − ηx2) = −x1 + |x2|. If we perturb the unit ball a little so
that it becomes uniformly convex but still has corners with a little bit larger
angle, then with some 0 < δ < 1, we obtain likewise h(x) = −x1 + δ|x2|.
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The following result was shown in [13, Section 5]. We present here a
different proof.

Theorem 4.16. Let E be a uniformly smooth Banach space. If h ∈ E♢ is
a metric functional that arises from a net (aα) in E when ∥aα∥ → ∞, then
there exists u∗ ∈ BE∗ such that h(x) = ⟨x, u∗⟩ for all x ∈ E. Conversely,
if u∗ ∈ BE∗ is given then there exists a sequence (an) in E such that for all
x ∈ E we have han(x) → ⟨x, u∗⟩.

Proof. Since E is uniformly smooth, the norm of E has the property:

lim
t→0

∥u+ tv∥ − ∥u∥ − ⟨tv, j(u)⟩
∥tv∥

= 0

uniformly for all u, v ∈ SE, where j(u) is the unique dual vector of u (see
[21, p. 36]). Let us assume that aα ̸= 0 for all α and let uα = aα/∥aα∥. Now,
we fix x ∈ E and let tv = −x/∥aα∥. We notice that

hα(x) = ∥x− aα∥ − ∥aα∥ = ∥aα∥(∥uα + tv∥ − 1).

Thus, we have

hα(x) = ∥aα∥
(
⟨tv, j(uα)⟩+ ∥tv∥o(1)

)
= −⟨x, j(uα)⟩+ ∥x∥o(1)

as ∥aα∥ → ∞. By the Banach-Alaoglu theorem, the net (j(uα)) has a limit
point −u∗ ∈ BE∗ , and hence h(x) = ⟨x, u∗⟩.

Conversely, let us assume that u∗ ∈ BE∗ is given. We choose any sequence
(f ∗

n) in SE∗ converging weakly to 0 and scalars tn so that ∥u∗ + tnf
∗
n∥ = 1.

Let un ∈ SE be such that j(un) = u∗ + tnf
∗
n and let an = nun. Then, han(x)

converges to ⟨x, u∗⟩ for all x ∈ E.

As seen from Example 4.15, the nonsmooth points on the unit sphere SE

create metric functionals which are not linear. Likewise, all linear functionals
of norm at most 1 need not be metric functionals. By Theorem 4.2, every
metric functional on ℓ1 is linear if and only if it has the form h(x) =

∑∞
j=1 εjxj

where εj ∈ {−1, 1} for all j ∈ N. Therefore, ℓ1 does have ZFP.
Karlsson showed that ℓ∞ has ZFP (see [7, Proposition 22]). Below we

give a different proof.

Proposition 4.17. Let S be a nonempty set. Assume that B(S), the vector
space of real-valued bounded functions on S, is equipped with the sup-norm.
Then, B(S) has ZFP.
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Proof. Let us consider a metric functional h ∈ B(S)♢ and assume that (aα)
is a net in B(S) such that h = limα hα, where hα(x) = ∥x− aα∥ − ∥aα∥ for
all x ∈ B(S). Now, let (δα) be a net of positive reals converging to 0. Then,
for each α there exists a point sα ∈ S such that

∥aα∥ ≤ |aα(sα)|+ δα.

Suppose that (aα) has a subnet (aβ) for which aβ(sβ) > 0. Let u ∈ B(S) be
the constant function u(s) = −1 for all s ∈ S. We notice that

∥u− aβ∥ ≥ 1 + aβ(sβ) ≥ 1 + ∥aβ∥ − δβ.

Thus, we have 1− δβ ≤ hβ(u) ≤ 1, and hence h(u) = 1. If such subnet (aβ)
does not exist, consider u = 1 instead.

By an argument quite similar to the one used in the previous proof, we
can show that the Banach space C(K) of continuous functions on a compact
Hausdorff space K has ZFP.

Proposition 4.18. Let K be a compact Hausdorff space and let u(s) = 1 for
all s ∈ K. Then, for all h ∈ C(K)♢ and for all t ≥ 0 we have

h(tu) = t or h(−tu) = t.

In particular, C(K) has ZFP.

As any normed space E has metric functionals which are not bounded
below, the question of X ⊂ E having UMP is interesting essentially only
when X is bounded. We shall formulate the observations for X = BE, the
closed unit ball of E.

The first observation is that Bc0 does not have ZFP. Hence, additional
assumptions are needed on E such that BE would have ZFP or UMP. We
consider three different properties of E which guarantee that BE has UMP
or at least ZFP.

Definition 4.19. A Banach space E has the Radon-Riesz property if weak
convergence and convergence of the norms imply strong convergence: an → a
weakly and ∥an∥ → ∥a∥ imply ∥an − a∥ → 0.

For example, every uniformly convex Banach space has the Radon-Riesz
property.

14



Proposition 4.20. Let E be a Banach space with the Radon-Riesz property.
If the closed unit ball BE is weakly compact, then BE has ZFP.

Proof. Let h be an element of (BE)
♢. Let us assume that (aα) is a net

of vectors in BE such that for all x ∈ E we have hα(x) → h(x), where
hα(x) = ∥x − aα∥ − ∥aα∥. Since (∥aα∥) is a net of real numbers in the
closed interval [0, 1], there is a subsequence (aαn) such that ∥aαn∥ → r where
∥a∥ ≤ r ≤ 1. As BE is weakly compact, the Eberlein-Šmulian theorem [22]
implies the existence of a subsequence, denoted again by (aαn), that converges
weakly to some a ∈ BE.

Let us assume that ∥a∥ is positive and consider the vector y = − 1
∥a∥a in

BE. Then, we have ∥y−a∥ = 1+∥a∥. If we denote by f the linear functional
1

1+∥a∥j(y − a) in BE∗ , we have

∥y − aαn∥ − ∥aαn∥ ≥ ⟨y − aαn , f⟩ − ∥aαn∥.

From the inequality shown above we get h(y) ≥ ∥y−a∥−r = 1+∥a∥−r > 0.
Now, let us assume that ∥a∥ equals 0. We may assume that r is positive,

otherwise we have h(x) = ∥x∥ for all x. Let us choose a vector z such that
∥z∥ = r and assume that ∥z − aαn∥ → r. The Radon-Riesz property implies
that (z− aαn) converges strongly to z, that is, (aαn) converges strongly to 0,
which is a contradiction. Therefore, we have h(z) ̸= 0.

Definition 4.21. A Banach space E has the Opial property, if whenever a
sequence (an) in E converges weakly to a, the following holds:

lim inf∥an − a∥ < lim inf∥an − x∥ for all x ̸= a.

All the ℓp spaces with 1 ≤ p < ∞ have the Opial property. A Banach
space has the Opial property if and only if whenever (an) converges weakly
to a nonzero limit a, the number lim infn⟨a, a∗n⟩ is positive, where a∗n ∈ j(an)
(see [23, Theorem 1]).

Proposition 4.22. Let E be a Banach space with the Opial property. If X
is a nonempty weakly compact subset of E, then X has UMP.

Proof. Let h be an element of X♢. Let us assume that (aα) is a net in X such
that for all x ∈ X we have h(x) = limα hα(x), where hα(x) = ∥x−aα∥−∥aα∥.
As X is weakly compact, there is a subsequence (aαn), a vector a ∈ X, and
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a nonnegative real number r such that aαn → a weakly and ∥aαn∥ → r. Due
to the Opial property, for all x ∈ X \ {a} we have

h(x) = lim
n
∥x− aαn∥ − r > lim

n
∥a− aαn∥ − r = h(a).

Another important concept is the following.

Definition 4.23. ([24], [25, Definition 3.1]) Let (an) be a sequence in a
Banach space E. If there exists a vector a ∈ E such that for all x ∈ E we
have

∥an − a∥ ≤ ∥an − x∥+ o(1)

when n → ∞, then one says that (an) is ∆−convergent to a.

Weak convergence and ∆-convergence coincide on Banach spaces that
have the Opial property and are both uniformly smooth and uniformly convex
(see [25, Theorem 3.19]). This is true in particular on all Hilbert spaces and
all the ℓp spaces with 1 < p < ∞. A key result for ∆-convergence is the
following theorem, which has a resemblance to the Banach-Alaoglu theorem.

Theorem 4.24. ([24, Theorem 4]) Let E be a uniformly convex Banach
space. Then, every bounded sequence (an) in E has a ∆-convergent subse-
quence.

We have immediately the following.

Proposition 4.25. Let X be a bounded subset of a uniformly convex Banach
space E. If (an) is a sequence in X such that (han) converges to a metric
functional h ∈ X♢, then there exists a unique vector a ∈ E such that for all
x ∈ E we have h(a) ≤ h(x).

Proof. By Theorem 4.24, the sequence (an) has a subsequence (ank
) that is

∆-convergent to some vector a ∈ E. By taking a suitable subsequence, we
may assume that ∥ank

∥ → r. Then, for all x ∈ E the limit limk∥x − ank
∥

exists and equals h(x) + r. By ∆-convergence, we have h(a) ≤ h(x) for all
x ∈ E. Now, let us assume that there is a vector b ∈ E such that b ̸= a and
h(a) = h(b). Since h is a convex functional (see [4, Proposition 10]), we have
h(1

2
(a+ b)) = h(a). Thus, we have

lim
k
∥a− ank

∥ = lim
k
∥b− ank

∥ = lim
k
∥(1/2)(a+ b)− ank

∥ = h(a) + r.
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Since we assumed that b ̸= a, the number M = h(a) + r must be positive.
Since E is uniformly convex, we must have

lim
k
∥M−1(a− ank

)−M−1(b− ank
)∥ = 0.

Thus, we have M−1∥a− b∥ = 0, which is a contradiction.

5. Proofs of the main results

Proof of Theorem 3.1. Let T and U be two elements of F . That is, both
T and U are affine nonexpansive mappings from E to itself and for all x ∈ E
we have TUx = UTx. Let us choose an arbitrary vector w ∈ X. For each
positive integer n let us consider the vectors an = n−1(w+Tw+ · · ·+T n−1w)
and bn = n−1(an+Uan+ · · ·+Un−1an). Since both T and U map the convex
set X into itself, both (an) and (bn) are sequences in X such that

∥bn − Tbn∥ ≤ ∥an − Tan∥ ≤ n−1∥w − T nw∥

and
∥bn − Ubn∥ ≤ n−1∥an − Unan∥ ≤ n−1∥w − Unw∥.

Due to Remark 3.2, our assumption m(T,X) = m(U,X) = 0 implies that
∥bn − Tbn∥ → 0 and ∥bn −Ubn∥ → 0 when n → ∞. Now, for each n ≥ 1 let
hn ∈ E♢ denote the metric functional defined for all x ∈ E by the formula
hn(x) = ∥x− bn∥ − ∥bn∥. Next, we notice that for all x ∈ E we have

hn(Tx)− hn(x) ≤ ∥bn − Tbn∥

and
hn(Ux)− hn(x) ≤ ∥bn − Ubn∥.

The compactness of E♢ implies that (hn) has a limit point h ∈ E♢ such that
h(Tx) ≤ h(x) and h(Ux) ≤ h(x).

We have so far proved our theorem for two elements of the family F . Our
claim is in fact true for all finite subsets of the family F , as a quick inspection
of the previous procedure reveals. With that fact in mind, we now proceed
to prove the general case. For each T ∈ F let MT denote the set of all metric
functionals h ∈ E♢ such that h(Tx) ≤ h(x) for all x ∈ E. We notice that
each MT is a nonempty closed subset of E♢ and the family {MT | T ∈ F}
has the finite intersection property. Since E♢ is compact, the set

⋂
T∈F MT

is nonempty. This set contains a metric functional h that is subinvariant for
all T ∈ F .
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Proof of Theorem 3.3. Let us assume that T and U are two elements of
the family F . For each positive integer n let xn denote the vector T nUnx0. As
both T and U map X into X and x0 ∈ X, (xn) is a sequence in X. Now, let
(hn) be the sequence in E♢ defined by the formula hn(x) = ∥x− xn∥− ∥xn∥
for all x ∈ E. Since T and U are defined on the whole space E, for all x ∈ E
and for all n ≥ 1 we have

hn(Tx)− hn(x) ≤ ∥xn − Txn∥ ≤ ∥T nx0 − T n+1x0∥

and
hn(Ux)− hn(x) ≤ ∥xn − Uxn∥ ≤ ∥Unx0 − Un+1x0∥.

In the two previous inequalities each term situated farthest to the right is
assumed to converge to 0 when n → ∞. Therefore, the compactness of E♢

implies that (hn) has a limit point h ∈ E♢ such that h(Tx) ≤ h(x) and
h(Ux) ≤ h(x). The rest of the proof follows from a compactness argument
similar to the one used in the proof of Theorem 3.1.

Proof of Theorem 3.5. Let us assume that h ∈ X♢ is subinvariant for
the mapping T : X → X. That is, for all x ∈ X we have h(Tx) ≤ h(x).
We know that the space X has UMP due to Proposition 4.22. Thus, there
is a vector a ∈ X such that for all x ∈ X \ {a} we have h(a) < h(x). The
preceding two inequalities imply that Ta = a.
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