The horofunction boundary of finite-dimensional $\ell_{p}$ spaces
Abstract
We give a complete description of the horofunction boundary of finite-dimensional $\ell_{p}$
spaces for $1 \leq p \leq \infty.$
We also study the variation norm on $\mathbf{R}^\mathcal{N}$
, $\mathcal{N}=\{1,…,N\}$
, and the corresponding horofunction boundary. As a consequence, we describe the horofunctions for Hilbert’s projective metric on the interior of the standard cone $\mathbf{R}^\mathcal{N}_{+}$
of $\mathbf{R}^\mathcal{N}$
.
Type
Publication
Colloquium Mathematicum 155, No. 1, 51-65 (2019)