The horofunction boundary of finite-dimensional p\ell_{p} spaces

Dec 1, 2018·
Armando W. Gutiérrez
Armando W. Gutiérrez
· 0 min read
Abstract
We give a complete description of the horofunction boundary of finite-dimensional p\ell_{p} spaces for 1p.1 \leq p \leq \infty. We also study the variation norm on RN\mathbf{R}^\mathcal{N} , N={1,,N}\mathcal{N}=\{1,…,N\} , and the corresponding horofunction boundary. As a consequence, we describe the horofunctions for Hilbert’s projective metric on the interior of the standard cone R+N\mathbf{R}^\mathcal{N}_{+} of RN\mathbf{R}^\mathcal{N} .
Type
Publication
Colloquium Mathematicum 155, No. 1, 51-65 (2019)